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doublets) dependence in the double seesaw mechanism so that it is directly proportional

to the mass matrix m(nn) of heavy Majorana neutrinos. The family symmetry is supposed

to be broken spontaneously at high energy scale so that the neutrino mass matrix is given

by the family symmetry at high energy scale. With the permutation symmetry S3, we

note a variety of possible mass hierarchies arising distinctly in neutrinos, charged leptons,

Qem = −1
3 quarks, and Qem = 2

3 quarks. Distinguishing these hierarchies, we obtain

a relation between the CKM angles and the MNS angles. Finally, we comment on the

approximate relation θsol + θc ' π
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1. Motivation

Neutrino oscillations are parametrized by the MNS unitary matrix

UMNS =







Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3






. (1.1)

The |α〉 → |β〉 transition amplitude in the time interval t is [1],

〈νβ |να〉t =
∑

j

UαjU
†
jβe−iEjt (1.2)

where α = {e, µ, τ} is the weak eigenstate index and i = {1, 2, 3} is the mass eigenstate

index. Then, in the vacuum for example the survival probability of flavor να at high energy

E is given by

Pνα→να = 1 −
∑

i,j

4|Uαi|2|Uαj |2 sin2

(

∆m2
ij

4E
t

)

(1.3)
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where ∆m2
ij = m2

i − m2
j . However, neutrinos from the production point to the observing

point pass through dense matter regions, noticeably changing the above survival proba-

bility in matter via the so-called MSW effect [2]. Currently, the disappearance data from

atmospheric and solar neutrinos point toward the following mixing matrix,

UMNS =









√

2
3eiδ3 × 0

× × 1√
2
eiδ2

× × 1√
2
eiδ1









(1.4)

where × is unspecified. Motivated by this observation, recently a tri-bi-maximal mixing

form has been suggested [3 – 5],

UMNS '









√

2
3

1√
3

0

− 1√
6

1√
3

1√
2

− 1√
6

1√
3

− 1√
2









(1.5)

which is possible starting from some discrete symmetries such as the permutation symmetry

S3 [4] and tetrahedral symmetry A4 [5]. Note that there does not exist a measurable

CP phase in this form. Since the neutrino mixing matrix involves the unitary matrices

diagonalizing charged lepton and neutrino mass matrices, one must consider both of these

unitary matrices. With the S3 symmetry, for example, the charged lepton and neutrino

mass matrices are assumed to take different representations under S3. One simple choice

is assuming that charged leptons are singlets under the discrete group and the form (1.5)

is obtained purely from the neutrino mass matrix. Another possibility is to assume a bi-

maximal form for the neutrino mass and a tri-maximal form for the charged lepton mass as

done in ref. [4]. Certainly, the latter choice is very appealing in the simplicity of explaining

both the bi-maximal [6] and tri-maximal [4] structures in a single mixing matrix of (1.5).

But there exists another complication due to the hypothetical mechanism for generat-

ing neutrino masses. In the standard model(SM), there exist renormalizable couplings

for charged lepton masses.1 But to generate neutrino masses at the SM level, non-

renormalizable dimension-5 couplings are needed. To obtain these through the seesaw

mechanism, one needs heavier neutrinos, collectively represented as n. Thus, the above

attractive proposal for the bi- and tri- structure has to be carefully addressed.

It is of utmost importance to relate the neutrino mass matrix and the n mass matrix,

or there are too many parameters to be assumed to be specific values. In the seesaw

scenario, there appear Yukawa couplings between singlet neutrinos and doublet neutrinos,

which complicate a direct application of symmetry idea. In this regard, earlier Lindner et

al. [8] studied the possibility of removing this Yukawa coupling dependence as ‘screening

of Dirac flavor structure’.

For this purpose, we introduce a family symmetry and use the double seesaw mecha-

nism to relate neutrino and n mass matrices. In this process, we need two types of heavy

neutrinos, collectively represented as n and N types and two continuous symmetries F1

1Renormalizable and nonrenormalizable couplings are the effective ones at low energy.
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and F2. Specifically, the dependence of neutrino mass matrix on the Yukawa couplings

involving N and lepton doublets are removed, which will be shown to be possible by a

hierarchy of singlet vacuum expectation values(VEVs).

Another appealing phenomenological relation is the sum rule of the solar neutrino

mixing, θsol, and the Cabibbo angle, θc,

θexp
sol + θexp

c ' 33o + 13o → π

4
. (1.6)

Already there exist many ideas trying to explain the above relation [6, 7] with GUTs and

with the quark-lepton complementarity idea,2 but most of them do not remove the Yukawa

coupling dependence in the neutrino mass matrix. We find that ref. [8] independently

observes the same kind of the removal of Yukawa coupling dependence under the phrase,

‘screening of Dirac flavor structure’. In eq. (1.6), θsol appears in the MNS matrix which is

given by diagonalizing neutrino and charged lepton mass matrices,

UMNS = U †
l Uν , (1.7)

and θc appears in the CKM matrix which is obtained by diagonalizing Q = 2
3 and Q = −1

3

quark mass matrices,

UCKM = U †
uUd. (1.8)

To relate the mixing angles of the leptonic sector and the quark sector, one must unify

leptons and quarks, or go beyond the SM to grand unified theories(GUTs) or the quark-

lepton complementarity. Here, we will be interested in the above sum rule also, and employ

the quark-lepton complementarity idea. But we will not discuss any specific model in detail.

At the SM level, there are four types of mass matrices: Qem = −1
3 quark mass matrix

m(d), Qem = 2
3 quark mass matrix m(u), Qem = −1 charged lepton mass matrix ml, and

Qem = 0 neutrino mass matrix mν . GUTs relate some of these mass matrices. The well-

known one is the SU(5) relation with a Higgs quintet generating both Qem = −1
3 quark

and Qem = −1 lepton mass matrices [10]. Then, we obtain a relation between four unitary

matrices, UCKM, UMNS, and two unitary matrices Uν and U (u) which diagonalize mν and

m(u), respectively. Here, usually UCKM and UMNS are phenomenologically determined and

Uν and U (u) are given theoretically. Thus, in addressing the above questions, it is suggested

that the relation arises naturally from a proposed discrete symmetry.

The four types of fermions have distinct mass hierarchies. The charged leptons and

down type quarks have the similar pattern for masses, me,d ¿ mµ,s ∼ 1
20mτ,b. The neutrino

mass hierarchy is quite different from this,

∆m2
ν ij ¿ ∆m2

ν jk (1.9)

where the LHS is for the solar neutrino oscillation and the RHS is for the atmospheric

neutrino oscillation. Finally, the up type quark masses are distinct from any of the above

patterns,

mu ¿ mc ∼
1

150
mt, or mu,mc ¿ mt. (1.10)

2Some think that the quark-lepton complementary relation is just a numerical accident [9].
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The pattern (1.9) hints two almost degenerate neutrinos compared to the other neutrino,

and the pattern (1.10) hints two almost massless quarks compared to top quark. These

observations can be used as an input in the mixing angle relation.

In the SM without a family symmetry, there results the CKM mixing since the Yukawa

couplings for the up-type quark masses are given differently from those for the down-type

quark masses. With a family symmetry, nonzero mixing angles can arise only after breaking

the imposed family symmetry. Since low energy Yukawa couplings are given in terms of

dimension 4 renormalizable couplings, we assume that the original high energy couplings

are non-renormalizable. If we consider an S3 family symmetry, the quark mixing can

arise only after the S3 symmetry is spontaneously broken differently for the up-type and

down-type quark sectors. The same argument applies to the leptonic sectors also.

In section 2, we introduce two continuous quantum numbers F1 and F2 to relate the

neutrino masses and the n masses via the double seesaw mechanism. In section 4, distinct

patterns of neutrinos, charged leptons, Qem = −1
3 and Qem = 2

3 masses are used to obtain

the tri-bi-maximal MNS unitary matrix. In section 5, we try to connect UCKM and UMNS

and obtain an approximate relation θsol + θc ' π
4 . Section 6 is a conclusion.

2. Neutrino masses induced by heavy neutrinos

The charged lepton and quark masses arise from the dimension four Yukawa couplings

−LY = f
(u)
IJ ucIH2q

J + f
(d)
IJ dcIH1q

J + f
(e)
IJ ecIH1l

J + h.c. , (2.1)

where all the fermions are represented in terms of left-handed Weyl fields, q and l are the

quark and lepton doublets, and we used the two Higgs doublet notation with hypercharges

Y (H1) = −1
2 and Y (H2) = 1

2 . If we introduce only one Higgs doublet H1, then we replace

H2 by −iσ2H
∗
1 . In eq. (2.1), the roman characters I, J represent the family indices.

The quark and lepton masses between families are distinguished by the difference of their

Yukawa coupling strengths. The smallness of Cabibbo angle in the two family case is due to

the hierarchy f12, f21, f11 ¿ f22. For the three family case, we have f22, fi3(i = 1, 2) ¿ f33.

The gauge symmetry does not allow masses of neutrinos. To obtain neutrino mass, we

must introduce more field(s). We adopt the seesaw idea of introducing SM singlet (neutral)

heavy fermion(s), n. Then neutrino masses can arise through the seesaw mechanism,

symbolically written as

mν ∼ (fv)2

M̃
(2.2)

where v is the vacuum expectation value of the Higgs doublet H2, and M̃ is the Majo-

rana mass of the heavy neutrino(s). Because the Yukawa coupling appears as f2 in the

numerator, it is not expected that the single seesaw would remove the f2 dependence. To

remove the f2 dependence, we must have the same f2 appearing in the denominator also.

For this purpose, a double seesaw is needed as depicted in figure 1. In another context,

the double seesaw was considered in ref. [12], where however our attempt of removing the

Yukawa coupling dependence was not tried. Also, a kind of U(2) symmetry for dimension-5

neutrino mass operator was considered [13], which does not belong to our scheme either.
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νI

vfIK

(M−1)KP

mPQ

(M−1)QL

vfLJ

νJ

NK NLnP nQ

Figure 1: A double seesaw diagram with generic eigenvalues of fv, m and M have a hierarchy

M À m À fv.

To relate Yukawa couplings appearing in the Dirac masses fv and M , we must introduce

some symmetry. So let us introduce family quantum number QF . For each family, let us

introduce the following chiral fermions

lI ≡
(

νI

lI

)

, lcI , NI , nI , qI , uc
I , dc

I (2.3)

where NI and nI are neutral SU(2)×U(1)Y singlet heavy neutrinos and l and q are the

lepton and quark doublets of the SM. One family is composed of 17 chiral fields, which

together with Higgs multiplets can arise from the E6 GUT with 27 [14] and trinification

with (3,3∗,1) + (1,3,3∗) + (3∗,1,3) [15, 16].

The SM singlet neutral leptons can have bare masses unless they are forbidden by

a symmetry. The lepton number is a good symmetry forbidding their bare masses. We

assign the opposite lepton numbers to lI and NI . For nI , we introduce another independent

quantum number, say n-number. lI and NI do not carry the n number. The symmetry of

leptons is SU(2)L×U(1)Y ×U(1)F1×U(1)F2 where U(1)F1×U(1)F2 is a continuous symmetry.

To generate fermion masses, let us introduce the usual SU(2)×U(1)Y doublet Higgs field

H2 and SU(2)×U(1)Y singlet but U(1)F2 nonsinglet Ss. The lepton quantum numbers, F1

and F2, are

l ec N n S1 S2 H2

F1 1 −1 −1 1 −2 0 0

F2 0 0 0 1 −2 −1 0

(2.4)

Consistently with the quantum numbers of (2.4), we can write the renormalizable Yukawa

couplings involving singlet leptons as

−L = f
(lN)
IJ N IH2l

J + f
(Nn)
IJ N InJS2 + f

(nn)
IJ nInJS1 + h.c. (2.5)

– 5 –
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For a family symmetry, we require that fIJ are the same if l, ec, N and n belong to the

same family, i.e.

f
(lN)
IJ = f

(Nn)
IJ → (2.6)

? = f
(nn)
IJ . (2.7)

The above family symmetry relations may appear from the underlying theory at high

energies. In this paper, however, we do not construct explicitly an underlying high energy

model where the Yukawa couplings are generated by some important nonrenormalizable

operators. The relation (2.6) for complex Dirac masses can be differentiated in principle

from the relation (2.7) for real Majorana masses. But the family symmetry can be achieved

by assigning l and n in the same multiplet. Note that the F2 quantum numbers of l and n

in (2.4) are different; thus we interpret F2 as a U(1) subgroup of a unifying group so that

l and n can be put in the same representation of the unifying group.

The double seesaw diagram of figure 1 gives neutrino masses. We can see immediately

that for f2 to appear in the denominator, M of figure 1 can be taken to be much larger than

those of m. However, it is known that even without this restriction the Yukawa coupling

dependence disappears [8]. However, an intuitive understanding of this phenomenon is

most transparent in the limit

V2 À V1 À v, (2.8)

where V1 = 〈S1〉, V2 = 〈S2〉, and v =
√

2〈H0
2 〉. In this case, figure 1 gives the f2 independent

neutrino mass

mν
IJ = (vfIK)(M−1)KP (mPQ)(M−1)QL(vfLJ)

=
v2

2

V1

V 2
2

f
(lN)
IK (f (Nn))−1

KP f
(nn)
PQ (f (Nn))−1

QLf
(lN)
LJ

=
v2V1

2V 2
2

f
(nn)
IJ (2.9)

where we used (2.6).

3. Some properties of S3

If the family symmetry applied to the up-type and down-type quarks are identical, the

CKM matrix would be diagonal. Therefore, it is necessary that the family symmetry is

spontaneously broken differently for the up-type and down-type quark sectors. Let us

briefly review how the S3 symmetry can be broken differently for the up and down type

quarks. The same strategy is applied to the leptons also. There is a long list of references

on S3, some of which are given in [18, 19].

3.1 Representations

S3 is a permutation symmetry of three objects, which can be conveniently represented

as permutations of three vertical points of equilateral triangle, A ∼ (1, 0),B ∼ (−1
2 ,

√
3

2 )

and C ∼ (−1
2 ,−

√
3

2 ). In the complexified coordinate, (x + iy, x − iy), these points are

– 6 –
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represented as

A ∼
(

1

1

)

, B ∼
(

ω

ω2

)

, C ∼
(

ω2

ω

)

(3.1)

where ω is a cube root of unity, ω = −1
2 + i

√
3

2 . The permutation operation of three

objects is

1 2 3

↓ ↓ ↓
i j k

(3.2)

where {ijk} is a permutation of {123}. The operation (3.2) is simply written as (ijk).

Then, the six operations of S3 are represented as

(123) ∼
(

1 0

0 1

)

, (231) ∼
(

ω 0

0 ω2

)

, (312) ∼
(

ω2 0

0 ω

)

(3.3)

(132) ∼
(

0 1

1 0

)

, (321) ∼
(

0 ω2

ω 0

)

, (213) ∼
(

0 ω

ω2 0

)

(3.4)

From three objects A,B,C, we can construct a singlet S ∼ (A + B + C). The other

remaining combinations form a doublet with components D↑ ∼ (A + ω2B + ωC) and

D↓ ∼ (A + ωB + ω2C). Explicitly, we can show that

D↑ ∼
(

1

0

)

, D↓ ∼
(

0

1

)

.

3.2 Tensor products

Consider a tensor product from two doublets of S3,

ΨX =

(

ψ1
X

ψ2
X

)

, ΨY =

(

ψ1
Y

ψ2
Y

)

. (3.5)

The product representation ΨX ⊗ΨY has four elements which have the transformation

following properties under S3

1 ∼ (ψ1
Xψ2

Y + ψ2
Xψ1

Y ), 1′ ∼ (ψ1
Xψ2

Y − ψ2
Xψ1

Y ), (3.6)

and

2 ∼
(

ψ2
Xψ2

Y

ψ1
Xψ1

Y

)

. (3.7)

Repeating the multiplication rule (3.7), one can construct a singlet from three doublets of

S3 as

ψ1
Xψ1

Y ψ1
Z ± ψ2

Xψ2
Y ψ2

Z . (3.8)

– 7 –
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Including the above 2×2 tensor product, a dyadic is constructed from two triplets(3=S

+D), S1 + D1 and S2 + D2 where

31 : S1 =
1

3
(f1 + f2 + f3), D1 =

1

3

(

f1 + ω2f2 + ωf3

f1 + ωf2 + ω2f3

)

(3.9)

32 : S2 =
1

3
(f ′

1 + f ′
2 + f ′

3), D2 =
1

3

(

f ′
1 + ω2f ′

2 + ωf ′
3

f ′
1 + ωf ′

2 + ω2f ′
3

)

. (3.10)

Let the two index S3 representation be Φij which transforms as a diadic

Φij ∼ φi ⊗ φ′
j. (3.11)

Similarly with (3.9,3.10), we define singlets and doublets with φs,

1φ :
1

3
(φ1 + φ2 + φ3) → ξ1,

2φ :
1

3

(

φ1 + ω2φ2 + ωφ3

φ1 + ωφ2 + ω2φ3

)

→
(

ξ2

ξ3

)

(3.12)

1φ′ :
1

3
(φ′

1 + φ′
2 + φ′

3) → ξ′1,

2φ′ :
1

3

(

φ′
1 + ω2φ′

2 + ωφ′
3

φ′
1 + ωφ′

2 + ω2φ′
3

)

→
(

ξ′2
ξ′3

)

(3.13)

We can introduce S3 representations having two indices following the transformation rules

of dyadic (3.12–3.13) for two-index singlets and two-index doublets. The nine components

of the dyadic made of (3.12,3.13) split into the following S3 multiplets, which constitute

the representations of Φ,

S3 = ξ1ξ
′
1, S4 = ξ2ξ

′
3 + ξ3ξ

′
2, S′ = ξ2ξ

′
3 − ξ3ξ

′
2, (3.14)

D3 = ξ1

(

ξ′2
ξ′3

)

, D4 =

(

ξ2

ξ3

)

ξ′1, D5 =

(

ξ3ξ
′
3

ξ2ξ
′
2

)

. (3.15)

Below, we will use predominantly the dyadic symbols written with ξs.

The renormalizable Yukawa coupling for quark masses are assumed to arise from non-

renormalizable dimension 5 operators at the Planck scale

∼ 1

MP l
fif

′
jH〈Φij〉 (3.16)

where fi is the symbol for a fermion, i, j are the labels of the permutation symmetry, H is

a Higgs doublet which does not carry a family index, and Φij is the two-index scalar field.

Since H is a singlet of the family group, we can consider the relevant couplings presented

in Table 1 with coupling constants λs, which are interpreted as coupling times 〈H0〉/MP l.

There are fifteen couplings.

Depending on the direction of VEVs, the permutation symmetry is broken.

– 8 –
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1 1
′

S1S2S3 λ1(f1+f2+f3)(f ′

1
+f ′

2
+f ′

3
)ξ1ξ′

1

S1S2S4 λ2(f1+f2+f3)(f ′

1
+f ′

2
+f ′

3
)(ξ2ξ′

3
+ξ3ξ′

2
)

S1S2S
′ λ3(f1+f2+f3)(f ′

1
+f ′

2
+f ′

3
)(ξ2ξ′

3
–ξ3ξ′

2
)

D1D2S3

λ4[(f1+ω2f2 +ωf3)(f ′

1
+ωf ′

2
+ω2f ′

3
)

+(f1+ωf2+ω2f3)(f ′

1
+ω2f ′

2
+ωf ′

3
)]ξ1ξ′

1

λ4[(f1+ω2f2 +ωf3)(f ′

1
+ωf ′

2
+ω2f ′

3
)

–(f1+ωf2+ω2f3)(f ′

1
+ω2f ′

2
+ωf ′

3
)]ξ1ξ′

1

D1D2S4

λ5[(f1+ω2f2 +ωf3)(f ′

1
+ωf ′

2
+ω2f ′

3
)

+(f1+ωf2+ω2f3)(f ′

1
+ω2f ′

2
+ωf ′

3
)](ξ2ξ′

3
+ ξ3ξ′

2
)

λ5[(f1+ω2f2 +ωf3)(f ′

1
+ωf ′

2
+ω2f ′

3
)

–(f1+ωf2+ω2f3)(f ′

1
+ω2f ′

2
+ωf ′

3
)](ξ2ξ′

3
+ ξ3ξ′

2
)

D1D2S
′

λ6[(f1+ω2f2 +ωf3)(f ′

1
+ωf ′

2
+ω2f ′

3
)

–(f1+ωf2+ω2f3)(f ′

1
+ω2f ′

2
+ωf ′

3
)](ξ2ξ′

3
– ξ3ξ′

2
)

λ6 [(f1+ω2f2+ωf3)(f ′

1
+ωf ′

2
+ω2f ′

3
)

+(f1+ωf2+ω2f3)(f ′

1
+ω2f ′

2
+ωf ′

3
)](ξ2ξ′

3
– ξ3ξ′

2
)

S1D2D3

λ7[(f1+f2 +f3)(f ′

1
+ω2f ′

2
+ωf ′

3
)ξ1ξ′

3

+(f1+f2+f3)(f ′

1
+ωf ′

2
+ω2f ′

3
)ξ1ξ′

2
]

λ7[(f1+f2 +f3)(f ′

1
+ω2f ′

2
+ωf ′

3
)ξ1ξ′

3

–(f1+f2+f3)(f ′

1
+ωf ′

2
+ω2f ′

3
)ξ1ξ′

2
]

S1D2D4

λ8[(f1+f2 +f3)(f ′

1
+ω2f ′

2
+ωf ′

3
)ξ3ξ′

1

+(f1+f2+f3)(f ′

1
+ωf ′

2
+ω2f ′

3
)ξ2ξ′

1
]

λ8[(f1+f2 +f3)(f ′

1
+ω2f ′

2
+ωf ′

3
)ξ3ξ′

1

–(f1+f2+f3)(f ′

1
+ωf ′

2
+ω2f ′

3
)ξ2ξ′

1
]

S1D2D5

λ9[(f1+f2 +f3)(f ′

1
+ω2f ′

2
+ωf ′

3
)ξ2ξ′

2

+(f1+f2+f3)(f ′

1
+ωf ′

2
+ω2f ′

3
)ξ3ξ′

3
]

λ9[(f1+f2 +f3)(f ′

1
+ω2f ′

2
+ωf ′

3
)ξ2ξ′

2

–(f1+f2+f3)(f ′

1
+ωf ′

2
+ω2f ′

3
)ξ3ξ′

3
]

D1S2D3

λ10 [(f1+ω2f2+ωf3)(f ′

1
+f ′

2
+f ′

3
)ξ1ξ′

3

+(f1+ωf2+ω2f3)(f ′

1
+f ′

2
+f ′

3
)ξ1ξ′

2
]

λ10[(f1+ω2f2 +ωf3)(f ′

1
+f ′

2
+f ′

3
)ξ1ξ′

3

–(f1+ωf2+ω2f3)(f ′

1
+f ′

2
+f ′

3
)ξ1ξ′

2
]

D1S2D4

λ11[(f1+ω2f2 +ωf3)(f ′

1
+f ′

2
+f ′

3
)ξ3ξ′

1

+(f1+ωf2+ω2f3)(f ′

1
+f ′

2
+f ′

3
)ξ2ξ′

1
]

λ11[(f1+ω2f2 +ωf3)(f ′

1
+f ′

2
+f ′

3
)ξ3ξ′

1

–(f1+ωf2+ω2f3)(f ′

1
+f ′

2
+f ′

3
)ξ2ξ′

1
]

D1S2D5

λ12[(f1+ω2f2 +ωf3)(f ′

1
+f ′

2
+f ′

3
)ξ2ξ′

2

+(f1+ωf2+ω2f3)(f ′

1
+f ′

2
+f ′

3
)ξ3ξ′

3
]

λ12[(f1+ω2f2 +ωf3)(f ′

1
+f ′

2
+f ′

3
)ξ2ξ′

2

–(f1+ωf2+ω2f3)(f ′

1
+f ′

2
+f ′

3
)ξ3ξ′

3
]

D1D2D3

λ13[(f1+ωf2 +ω2f3)(f ′

1
+ωf ′

2
+ω2f ′

3
)ξ1ξ′

3

+(f1+ω2f2+ωf3)(f ′

1
+ω2f ′

2
+ωf ′

3
)ξ1ξ′

2
]

λ13[(f1+ωf2 +ω2f3)(f ′

1
+ωf ′

2
+ω2f ′

3
)ξ1ξ′

3

–(f1+ω2f2+ωf3)(f ′

1
+ω2f ′

2
+ωf ′

3
)ξ1ξ′

2
]

D1D2D4

λ14[(f1+ωf2 +ω2f3)(f ′

1
+ωf ′

2
+ω2f ′

3
)ξ3ξ′

1

+(f1+ω2f2+ωf3)(f ′

1
+ω2f ′

2
+ωf ′

3
)ξ2ξ′

1
]

λ14[(f1+ωf2 +ω2f3)(f ′

1
+ωf ′

2
+ω2f ′

3
)ξ3ξ′

1

–(f1+ω2f2+ωf3)(f ′

1
+ω2f ′

2
+ωf ′

3
)ξ2ξ′

1
]

D1D2D5

λ15[(f1+ωf2 +ω2f3)(f ′

1
+ωf ′

2
+ω2f ′

3
)ξ2ξ′

2

+(f1+ω2f2+ωf3)(f ′

1
+ω2f ′

2
+ωf ′

3
)ξ3ξ′

3
]

λ15[(f1+ωf2 +ω2f3)(f ′

1
+ωf ′

2
+ω2f ′

3
)ξ2ξ′

2

–(f1+ω2f2+ωf3)(f ′

1
+ω2f ′

2
+ωf ′

3
)ξ3ξ′

3
]

Table 1: Singlet combinations from 31 = S1 + D1,32 = S2 + D2 and Φij =

S3 + D3 + D4 + S4 + S′ + D5. The overall factor 1
3 is omitted.

If the couplings are the same λ1 = · · · = λ15 = λ, the mass matrix takes the following
form for the 1 + 1′ coupling

1 + 1
′
: λ

9

0

B

B

B

B

B

B

B

B

B

B

B

@

3ξ1ξ′
1

+ 6ξ2ξ′
3
, (1 + 2ω)(ξ1ξ′

1
+ 2ξ2ξ′

3
), (1 + 2ω2)(ξ1ξ′

1
+ 2ξ2ξ′

3
)

+6(ξ1ξ′
3

+ ξ2ξ′
2

+ ξ3ξ′
1
),

(1 + 2ω2)(ξ1ξ′
1

+ 2ξ2ξ′
3
), 3ξ1ξ′

1
+ 6ξ2ξ′

3
(1 + 2ω)(ξ1ξ′

1
+ 2ξ2ξ′

3
)

+6ω2(ξ1ξ′
3

+ ξ2ξ′
2

+ ξ3ξ′
1
),

(1 + 2ω)(ξ1ξ′
1

+ 2ξ2ξ′
3
), (1 + 2ω2)(ξ1ξ′

1
+ 2ξ2ξ′

3
), 3ξ1ξ′

1
+ 6ξ2ξ′

3

+6ω(ξ1ξ′
3

+ ξ2ξ′
2

+ ξ3ξ′
1
)

1

C

C

C

C

C

C

C

C

C

C

C

A

(3.17)

Then, for the vacuum direction

〈Φ11〉 = 〈Φ22〉 = 〈Φ33〉, (3.18)

we obtain a C3 symmetric mass matrix,

λ

9





a c∗ b
b a c∗

c∗ b a



 , (3.19)

where

a = 3ξ1ξ
′
1 + 6ξ2ξ

′
3, b = (1 + 2ω2)(ξ1ξ

′
1 + 2ξ2ξ

′
3), c∗ = (1 + 2ω)(ξ1ξ

′
1 + 2ξ2ξ

′
3).

This is one example how a specific direction of the permutation group is chosen by

spontaneous symmetry breaking. In gauge theories, such idea has been extensively stud-

ied [17]. For other directions, the relations are not so simple and we do not present them

here in detail. Below, we take the viewpoint that the vacuum chooses such directions when

we assume a specific form of mass matrix.
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4. Mixing matrix of light and heavy neutrinos

To fix the MNS mixing matrix UMNS of (1.7), one needs the neutrino mixing matrix Uν

obtained from (2.9) and charged lepton mixing matrix Ul obtained from (2.1). If we identify

the family symmetry ansatz even to Majorana neutrinos, (2.6) = (2.7), the MNS mixing

matrix would be identity, leading to no mixing angle between different families. But the

‘family’ structure defined for Majorana neutrino masses can be in principle different from

the family structure defined for Dirac masses. In this spirit, let us assume

f (lN) 6= f (nn) (4.1)

4.1 n-tuple maximal mixing

The maximal mixing angle in the fit of the atmospheric neutrino data suggests some kind

of symmetry. The simple form of mass matrix with the flavor democracy [11] is

m ∝







1 1 1

1 1 1

1 1 1






(4.2)

which has one heavy and two massless neutrinos. The above flavor democratic form belongs

to a special case of permutation symmetry S3 which has been extensively studied for

neutrino masses [18].

In general, the permutation symmetry of n Majorana neutrinos dictates the following

type mass matrix,

mn ∝















1 r r · · · r

r 1 r · · · r

r r 1 · · · r

· · · · · · · · · · · · · · ·
r r r · · · 1















. (4.3)

With a real r, we obtain for example the eigenvalues of (1 ± r) for n = 2, two (1 − r) and

one (1 + 2r) for n = 3, and two (1 − r) and 1 + r(1 ±
√

2i) for n = 4. Since we will be

interested in three families, we do not consider the complication arising from n ≥ 4. For

n = 3, there exists a hierarchy of ∆m2
ij, which is useful in explaining both atmospheric

and solar neutrino data. For charged leptons, in general the mass matrix is complex and

does not take the form (4.3).

Diagonalizing (4.3), we obtain a bi-maximal unitary transformation for the case of

n = 2 [20],

Uν,2×2 =

(

1√
2

1√
2

− 1√
2

1√
2

)

. (4.4)

m2 is diagonalized as

U †
ν,2×2m2Uν,2×2 ∝

(

1 − r 0

0 1 + r

)

. (4.5)
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For n = 3, we obtain a tri-maximal (third column) unitary transformation,

Uν,3×3 =







1√
2

1√
6

1√
3

− 1√
2

1√
6

1√
3

0 − 2√
6

1√
3






(4.6)

which diagonalizes m3,

U †
ν,3×3m3Uν,3×3 ∝







1 − r 0 0

0 1 − r 0

0 0 1 + 2r






. (4.7)

From (4.4) and (4.6), we try to make a tri-bi-maximal matrix, with one more row and

column to be added to (4.4) at our disposal. But with the form (4.6), one cannot obtain

a tri-bi-maximal mixing. Using the form (4.6) directly for charged leptons is not correct

anyway since the mass matrix ml itself for charged leptons is not Hermitian. We can

consider a Hermitian matrix m†
l ml for the diagonalization of which one uses the unitary

transformation of left-handed charged leptons Ul.

4.2 Light neutrino mass matrix from heavy neutrino mass matrix

Following the scheme of the previous section, we investigate the mass matrix m(nn) which is

proportional to mν . The diagonalizing matrix of m(nn) will appear in the neutrino mixing

matrix. The flavor democratic form for m(nn) (hence also for mν via the double seesaw)

introduces one heavy and two massless neutrinos. Therefore, the S3 symmetric form (4.3)

introduces one heavy neutrino and two massive degenerate neutrinos. If the S3 symmetry

is slightly broken by εn in the degenerate subspace in the following way

m(nn) = c







1 − r 0 εn

0 1 + 2r 0

εn 0 1 − r






, (4.8)

the degenerate mass eigenvalues are split into (1−r± εn) and 1+2r. Here, the bi-maximal

mixing matrix for diagonalizing m(ν) is [20],

Uν =







1√
2

0 − 1√
2

0 1 0
1√
2

0 1√
2






. (4.9)

But the form (4.9) does not depend on the strength of εn [20]. In fact, the mass matrix form

(4.8) indicates that the neutrino triplet transforms as a singlet(n2) plus a doublet(n1 and

n3) since the 2 × 2 subspace of m(nn) has the structure of the form (4.8) in this subspace.

However, we will treat |εn| ¿ 1 so that two scales of ∆m2
IJ is obtained such that the

atmospheric(2-3 subspace) and solar(1-3 subspace) neutrino data are explained.

So far we discussed the detailed structure of f (nn) in terms of the S3 permutation

symmetry. The form (4.9) can arise from a tiny breaking of the S3 permutation symmetry.

Note that with εn = 0, we recover the S3 symmetry in the original basis (4.3).
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4.3 Charged leptons

On the other hand, the mass hierarchy of charged leptons is quite different from neutrino

masses, me ¿ mµ ¿ mτ . Therefore, if S3 is a useful symmetry, the mass matrix of charged

leptons must break S3 form (4.3) further to have three different masses for charged leptons.

Since an S3 symmetric real mass matrix form (4.3) has a degenerate pair which we try to

avoid, we must use a subset of S3 generators, leading to tri-maximal mixing. One obvious

try is the cyclic permutation, i.e. {ijk} of eq. (3.2) is a cyclic permutation of (123). Thus,

we choose only three elements among six S3 generators, which is a cyclic permutation in

one direction, C3,

P123 ≡ I, P231 =





1 2 3
↓ ↓ ↓
2 3 1



 , P312 =





1 2 3
↓ ↓ ↓
3 1 2



 . (4.10)

Namely, we violate the exchange symmetry among any two indices. Choosing a subset of

generators is achieved by the Higgs mechanism, which we will explore in a future commu-

nication. Still we have a subset permutation among three in C3, there is a possibility of

tri-maximal mixing. Taking the following mass matrix for charged leptons, consistently

with the cyclic permutation C3,

m(l) =





a c∗ b
b a c∗

c∗ b a



 , (4.11)

we have

M2
l ≡ (m(l))†m(l) =





A B∗ B
B A B∗

B∗ B A



 , (4.12)

where

A = |a|2 + |b|2 + |c|2, B = a∗b + b∗c∗ + ac.

Indeed, the diagonalizing matrix Ul turns out to be tri-maximal [4],

Ul =









1√
3

ω√
3

ω2
√

3
1√
3

1√
3

1√
3

1√
3

ω2
√

3
ω√
3









, (4.13)

where ω is a square root of unity, ω = −1
2 + i

√
3

2 . Ul diagonalizes M2
l to

U †
l M2

l Ul =







A + B + B∗ 0 0

0 A + Bω + B∗ω2 0

0 0 A + Bω2 + B∗ω






. (4.14)
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Thus, we identify A,B and B∗ as

A =
1

3
(m2

e + m2
µ + m2

τ ) (4.15)

B =
1

3
(m2

e + m2
µω2 + m2

τω) (4.16)

B∗ =
1

3
(m2

e + m2
µω + m2

τω
2) (4.17)

4.4 Tri-bi-maximal mixing

Now, the MNS mixing matrix can be expressed in terms of Uν and Ul,

UMNS = U †
l Uν , or Uν = UlUMNS . (4.18)

From the neutrino mixing (4.9) and the charged lepton mixing (4.13), thus we obtain

UMNS = U †
l Uν =









1√
3

1√
3

1√
3

ω2
√

3
1√
3

ω√
3

ω√
3

1√
3

ω2
√

3















1√
2

0 − 1√
2

0 1 0
1√
2

0 1√
2






=









√
2√
3

1√
3

0

− 1√
6

1√
3

i√
2

− 1√
6

1√
3

− i√
2









. (4.19)

Defining iν3 as a new mass eigenstate, the desired tri-bi-maximal mixing matrix results

UMNS =









√
2√
3

1√
3

0

− 1√
6

1√
3

1√
2

− 1√
6

1√
3

− 1√
2









. (4.20)

5. Relation θsol + θc ' π
4

5.1 Up type quark masses

The intriguing phenomenological relation θexp
sol +θexp

c ' π
4 can be explained only if one relates

the lepton and quark sectors, which is the basic principle of GUTs. In the quark sector,

both the up and the down type mass matrices are complex. We observe the similarity in

the hierarchies of charged lepton masses and Qem = −1
3 quark masses [21]

me '
1

200
mµ ∼ 0, mµ ' 1

17
mτ (5.1)

md ' 1

20
ms ∼ 0, ms '

1

35
mb. (5.2)

Along with charged leptons, we propose that the complex down type quark mass matrix

is C3 symmetric, leading to three hierarchical masses of 0, ∼ 1
20 − 1

35 and 1. In GUTs,

the small discrepancy between charged lepton and Qem = −1
3 quark masses is explained in

various ways, for example by introducing the Georgi-Jarlskog type term [22].

But for the up type quarks there is a huge hierarchy of 0, 1
150 and 1, due to the very

large top quark mass

mu ' 1

200
mc ∼ 0, mc '

1

150
mt. (5.3)
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Here arises a question, “Should we treat the up type quark mass matrix m(u) as interpreting

one heavy and two degenerate zero masses or three nondegenerate masses?” Since any

perturbation can add a small addition, it is better to treat the up type matrix m(u) as the

first case, namely having one heavy and two zero mass eigenvalues. In addition to this

phenomenological observation, treating Qem = −1
3 quarks and Qem = 2

3 quarks differently

is required to obtain a nontrivial CKM matrix. Then, it is of the same form as m(nn), but

not quite because one is complex and the other is real. The matrix m(u)†m(u) is required

to have two zero eigenvalues, which must be done with the S3 symmetry.

Here we emphasize two aspects: one that the quark mass matrix is complex and another

that u quark is almost massless from the outset. Thus we introduce a flavor democratic

form or an S2 symmetric form with r = ±1 in the 2 × 2 subspace with zero entries at the

other row and column. This type of mass matrix is

m(u)†m(u) ∝







0 0 0

0 1 ±1

0 ±1 1






(5.4)

For an explicit demonstration, we choose the minus sign in eq. (5.4) and obtain the third

eigenvalue as mt with the following diagonalizing unitary matrix

U (u) =









1 0 0

0 1√
2

− 1√
2

0 1√
2

1√
2









(5.5)

where U (u)†m(u)†m(u)U (u) = (m(u)†m(u))diag.

5.2 Relating MNS and CKM angles

The MNS mixing matrix and the CKM mixing matrix are given by

UMNS = U †
l Uν , or Ul = UνU †

MNS,

UCKM = U (u)†U (d), or U (d) = U (u)UCKM.
(5.6)

In unifying models, U (d) and Ul are usually related,

U (d) = Ul : quark-lepton complementarity (5.7)

U (d) = U †
l : SU(5) GUT (5.8)

If we choose the quark-lepton complementarity relation, the MNS and CKM angles are

related by

UCKMUMNS ' U (u)†Uν : quark-lepton complementarity (5.9)

On the other hand, the SU(5) GUT relation gives

U (u)UCKM = UMNSU
†
ν : SU(5) GUT. (5.10)
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The SU(5) GUT relation can be studied with a specific form of U (u) and/or Uν . Here, we

illustrate our idea with the quark-lepton complementarity, (5.9). The LHS of (5.9) relates

θc and θsol. Note that sin θexp
c ' 0.22 which leads to θexp

c ' 0.071π, and from cos θth
sol =

√
2√
3

we have θth
sol ' 0.196π; thus θexp

c + θth
sol ' 0.267π. Basically, θc and θsol are related to U11

elements of UCKM and UMNS. Thus, we are interested in the first row of a real form of

UCKM which are parametrized by two angles θc and ϕq

U th
CKM '







cos θth
c sin θth

c cos ϕq sin θth
c sinϕq

× × ×
× × ×






. (5.11)

In the same vein, we are interested in the first column of a real form of UMNS which are

parametrized by two angles θsol and ϕl,

U th
MNS '







cos θth
sol ×12 0

sin θth
sol cos ϕl ×22 ×23

sin θth
sol sin ϕl ×32 ×33






(5.12)

from which we obtain

(U th
CKMU th

MNS)11 = cos θth
c cos θth

sol + sin θth
c sin θth

sol(cos ϕq cos ϕl + sin ϕq sin ϕl).

From the tri-bi-maximal form (1.5), we identify cosϕl = − 1√
2

and sin ϕl = − 1√
2
, giving

ϕl = 5
4π. So, we obtain cos ϕq cos ϕl + sin ϕq sinϕl = cos(ϕl − ϕq) = − 1√

2
(cos ϕq + sin ϕq).

The particle data book [21] gives UCKM 11 = (0.9739 to 0.9751) and UCKM 13 =

(0.0029 to 0.0045), which gives ϕq ' (0.0049 − 0.0065)π. Thus, we have

(

U th
CKM U th

MNS

)

11
= cos(θth

c + θth
sol) + sin θth

c sin θth
sol[1 + cos(ϕl − ϕq)]

= cos(θth
c + θth

sol) + sin θth
c sin θth

sol

[

1 − cos
(π

4
− ϕq

)]

→ cos(θth
c + θth

sol) + sin θexp
c sin θexp

sol

[

1 − cos
(π

4
− ϕq

)]

= cos(θth
c + θth

sol) + sin θexp
c sin θexp

sol

[

1 −
(

cos(0.25 − 0.0049)π

cos(0.25 − 0.0065)π

)]

' cos(θth
c + θth

sol) + 0.034. (5.13)

where in the third row we used the experimental value for sin θth
c sin θth

sol[· · · ] since the

replacement θth
c → θexp

c would introduce a small extra piece due to the smallness of sin θc.

On the other hand, the RHS of (5.9) with (5.5) is

U (u)†Uν =









1√
2

0 − 1√
2

1
2

1√
2

1
2

1
2 − 1√

2
1
2









. (5.14)
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Then, from eqs. (5.13) and (5.14), we obtain

cos(θth
c + θth

sol) '
1√
2

(5.15)

where the accuracy of the sum is 5% in view of eq. (5.13), which is a pretty good ap-

proximation. Thus, with the quark-lepton complementarity ansatz we obtain the following

approximate relation,

θth
c + θth

sol '
π

4
. (5.16)

Let us note that we obtained (5.16) with the following understanding:

(a) The possible dependence on the heavy neutrino Yukawa couplings is removed by the

family symmetry. Here, the double seesaw mechanism is used.

(b) We used the S3 symmetry categorically differently for Qem = 0,−1,−1
3 , and 2

3

fermions. In particular, for the up type quarks, we use the mass matrix of the

form (5.4), leading to one heavy and two zero masses.

(c) We obtain the relation θth
c + θth

sol ' 1
4π only approximately.

(d) The above relation is the one given at the GUT scale.

(e) We just tried to obtain the relation (5.16). It may not satisfy other phenomenological

constraints, for example the CKM matrix elements are not produced successfully. To

close this kind of loose ends, more elaborate ansatze may be needed rather than the

oversimplified quark-lepton universality.

Corrections. Running the Yukawa couplings from the GUT scale down to the elec-

troweak scale can change the relation (5.16) significantly. But there exist ideas that this

relation is not renormalized very much [23]. The relation is expected to be renormalized

by large Yukawa couplings and the QCD coupling. For the Dirac type Yukawa couplings

involving heavy leptons N and n, they are independent from the top quark Yukawa cou-

pling and hence can be taken as small values. So only the top quark Yukawa coupling is

important. To use the relation (5.9), the RHS is evaluated at the unification scale and the

LHS uses the experimental values at the electroweak scale. So we do not worry about the

renormalization of the RHS.

The QCD coupling is flavor blind and hence the correction to quark masses is universal,

leading to a factor of 3 modification [10] to quark masses down to 5 GeV, except that for

top quark. For top quark, the difference from 3 is ln(5/175)/ ln(5/1016) ∼ 0.1. But this

correction is not what we are interested in since we use m(u) which has two zero eigenvalues.

This structure of m(u) is not changed. For m(d), both s and b quarks are renormalized by

the same factor 3, and hence we expect that UCKM is not changed very much by αs. In

particular, we use only UCKM 11 which is close to 1 before and after the αs correction [24].

For m(d), the most significant change due to the large top quark Yukawa coupling

(symbolically represented as Yt) is expected to arise from the violation of ml = m(d) where

m(d) is corrected by large Yt. Both ml and m(d) are expected to take the form (4.11) at a

– 16 –
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W

H2

tL t̄R ×
tL

×
Yt

g2

g2

bL b̄R

Y ∗
t

×
Yt

Figure 2: A schematic view of corrections of m(d).

quark-lepton complementary scale. The extra correction to m(d) due to Yt is expected to

arise from the diagrams of the form given in figure 2, whose strength is estimated roughly as

|Yt|3g2
2

(4π2)2
· (kinematic factor) ∼ |Yt|3α2

4π3
∼ 2.5 × 10−4 (5.17)

which is smaller than 1
20 of eq. (5.2). Hence the down type mass category is not drastically

changed, and hence the CKM angles are not changed drastically.

Most studies on the correction of MNS angles in GUTs have been performed by study-

ing the running of neutrino masses arising through the dimension-5 operators llH2H2 [23].

Here, one usually assumes a large Yukawa coupling in view of the large top mass. Then, for

non-hierarchical neutrino masses the MNS angle is known to go a drastic change, and for

hierarchical neutrino masses the correction remains negligible. But in our double seesaw,

the needed Yukawa couplings f
(lN)
IJ and f

(Nn)
IJ (viz. eq. (2.9)) can be taken to be small,

and running of the MNS angle can be made negligible by taking |f (lN)
IJ | ¿ 1.

Therefore, we expect that the LHS of (5.9) is not corrected very much by going to the

electroweak scale, and hence the sum (5.16) is still valid.

Z3 orbifolds. The S3 symmetry we discuss is expected to arise from a more fundamental

theory. In the framework of quantum field theory, we can dictate relevant couplings corre-

sponding to the presumed family symmetry. But it is our hope to obtain the couplings from

a more fundamental theory. One example is string theory. From string theory, a good ex-

ample allowing the permutation symmetry of 3 objects is the Z3 orbifold compactification

of E8 ×E′
8 heterotic string [25]. The Yukawa couplings resulting from a Z3 orbifold do not

know how to distinguish the difference of three objects, leading to the discrete symmetry.

The specific forms for Yukawa couplings are the result of spontaneous symmetry breaking

of S3 symmetry. We note that in Z3 orbifolds, the sin2 θW problem hints toward a trini-

fication model [16], in which we will explore a realization of the mass matrices discussed

here in a future communication.
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6. Conclusion

In this paper, we use the family symmetry S3 which is dictated to be realized differently

for Qem = 0,−1,−1
3 , and 2

3 fermions. We introduce two types of heavy neutral leptons n

and N with two additional continuous symmetries F1 and F2. To discuss neutrino masses

just from the symmetry principle, it is suggested to use the double seesaw mechanism so

that the Yukawa couplings of N and lepton doublets are removed. The double seesaw

diagram of figure 1 removes the Yukawa coupling dependence if VEVs of singlets have

a hierarchy 〈S2〉 À 〈S1〉 À 〈H2〉. Then one obtains a direct proportionality between the

neutrino mass matrix and the n type Majorana mass matrix, viz. eq. (2.9). Now it becomes

possible to discuss just the mass matrices, and we note that neutrinos, charged leptons,

and Qem = −1
3 , 2

3 quarks have distinct patterns of mass hierarchy. In the S3 symmetric

scheme, the mass matrix forms of n, charged leptons and Qem = −1
3 , 2

3 quarks are dictated

to be realized to conform with the observed mass patterns. These different patterns are

the source of nontrivial MNS and CKM angles. A realization of these different patterns is

expected to result from spontaneous symmetry breaking of family symmetry. In quark and

lepton unification models, some of these angles can be related. In this paper, we studied

the quark-lepton complementarity to relate the charged lepton type mixing matrix and

the down type quark mixing matrix. The SU(5) GUT type relation is also possible, for

which however the resulting relation is not so simple. Finally, we also suggested a way to

understand the approximate relation θth
c + θth

sol ' π
4 .
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